Showing posts with label completeness of BV space. Show all posts
Showing posts with label completeness of BV space. Show all posts

Tuesday, February 21, 2012

There is something about the $BV$ space

I have been putting it off for a while. But now that I can write Latex in the blogger I can talk about $BV$ spaces.
Solutions of some mathematical problems which have discontinuities along one-codimensional manifolds where the first distributional derivatives are measures prompt us to consider the $BV$ space. I will refer to Attouch et al's book: Variational Analysis in Sobolev and BV spaces.

Definition of $BV$ space: We say that a function $u:\Omega\rightarrow \mathbb{R}$ is a function of bounded variations i.e. $u\in BV \,$ if and only if it belongs to $L^1(\Omega)$ and its gradient $Du$ in the distributional sense is in $M(\Omega, \mathbb{R}^N)$.

The following statements are equivalent.
(i) $u\in BV(\Omega)$
(ii) $u \in L^1(\Omega)$ and $u_{x_i}\in M(\Omega)$ for all $i=1, 2, ..., N$.
(iii) $u \in L^1(\Omega)$ and $\vert u \vert_{BV}<\infty$, where $\vert u\vert_{BV}:=\sup \{\langle Du, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_c(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}.$
(here $\langle Du, \,\mathbf{\phi}\rangle:=\sum_{i=1}^N \int_{\Omega}\, \mathbf{\phi}_i u_{x_i}$.)
(iv) $u \in L^1(\Omega)$ and $\vert u \vert_{BV}=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}<\infty$.

The implication (ii)$\implies $(iii) follows as $C_c(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$. The implication (ii)$\implies $(iii) follows as $C_c^{\infty}(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$ and $C_c(\Omega, \mathbb{R}^N)$.

Notations and facts:
$\Omega \subset \mathbb{R}^N$.
$C_0(\Omega, \mathbb{R}^N)$ is the space of all continuous functions that vanish at infinity. i.e. for a function $\phi\in C_0(\Omega, \mathbb{R}^N)$ the following is true: Given any $\epsilon > 0 $ there exists a compact set $K_{\epsilon} \subset \Omega$ such that $\sup_{x\in\Omega \backslash K_{\epsilon}}|\phi(x)|\leq \epsilon$.
The functions $\mathbf{\phi}$ in $C_0(\Omega, \mathbb{R}^N)$ are equipped with the uniform norm
$\Vert \phi \Vert_{\infty}:= \sup_{x \in \Omega}\{ |\phi(x)|\}$.
$C_c(\Omega, \mathbb{R}^N)$ is the subspace of $C_0(\Omega, \mathbb{R}^N)$ with a compact support in $\Omega$.
$C_b(\Omega,\mathbb{R}^N)$ is the subset of all bounded continuous functions from $\Omega$ into $\mathbb{R}^N$.

Density results:
$C_c(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$.
The space of infinitely differentiable and compactly supported functions $C_c^{\infty}(\Omega, \mathbb{R}^N)$ is dense is $C_0(\Omega, \mathbb{R}^N)$ and $C_c(\Omega, \mathbb{R}^N)$.

Duality results:
$M(\Omega, \mathbb{R}^N)$ denotes the space of all $\mathbb{R}^N$ valued Borel measures.
$M(\Omega, \mathbb{R}^N)$ is isomorphic to the product space $M^N(\Omega)$.
By the Riesz-Alexandroff representation theorem the dual of the space $C_0(\Omega, \mathbb{R}^N)$ (and thus of $C_c(\Omega, \mathbb{R}^N)$) can be isometrically identified with $M(\Omega, \mathbb{R}^N)$. i.e. any Borel measure $\mu$ is a bounded linear functional (continuous linear form if you like that) on $C_0(\Omega, \mathbb{R}^N)$ or $C_c(\Omega, \mathbb{R}^N)$ and the dual norms $\Vert\cdot \Vert_{C_{0}^{'}(\Omega, \mathbb{R}^N)}$ and $\Vert \cdot \Vert_{C_{c}^{'}(\Omega, \mathbb{R}^N)}$ are equal to the total mass $|\cdot|(\Omega)$ :
$$|\mu|(\Omega)\equiv \int_{\Omega}|\mu|=\sup\{ \langle \mu, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_0(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1 \} =\sup\{ \langle \mu, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_c(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1 \}.$$ Here, $\langle \mu, \,\phi\rangle\equiv\mu(\phi)\equiv\int_{\Omega} \phi \, d\mu \equiv \sum_{i=1}^N\int_{\Omega} \phi_i d\mu_i.$

The relation between $BV$ and the Sobolev space $W^{1, 1}$:

According to Radon-Nykodym theorem there exists $\nabla u \in L^1(\Omega, \mathbb{R}^N)$ and measure $D_s u$ that is singular with respect to $\mathcal{L}^N|_{\Omega}$, the $N-$ dimensional Lebesgue measure restricted to $\Omega$, such that: $$Du=\nabla u \, \mathcal{L}^N|_{\Omega}+ D_s u.$$ Thus, $W^{1, 1}$ is a subspace of the $BV-$ space and for functions in $W^{1, 1}$ we can write $Du=\nabla u$.

Norm on the $BV$ space:

The $BV$ space is equipped with the norm $\Vert u \Vert_{BV}=\Vert u \Vert_{L^1}+\vert u\vert_{BV}$.
Equipped with this norm the space of $BV$ functions is complete. The completeness of the $BV$ space follows from the completeness of $L^1$ and lower semicontinuity property which is stated below.

Proposition about the lower semicontinuity property of $BV-$ seminorm:
If $\{u_n\}$ is a sequence in $BV(\Omega)$ with $\sup_n |u_n|_{BV}< \infty$ that converges strongly $u_n \rightarrow u$ in $L^1(\Omega)$ then $|u|_{BV}\leq\lim \inf_{n\rightarrow \infty} |u_n|_{BV}$ and $u\in BV(\Omega)$.
Proof:
We use the following definition of BV seminorm here: $u \in L^1(\Omega)$ and $\vert u \vert_{BV}=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}<\infty$.
Let $\phi\in C_c^1(\Omega, \mathbb{R}^N)$ with $\Vert \phi \Vert_{\infty}\leq 1$.
We first observe that
$$\lim_{n\rightarrow \infty}\int_{\Omega} u_n\, \mbox{ div } \phi =\int_{\Omega} u\, \mbox{ div } \phi. \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$$
This follows as $u_n\rightarrow u$ in $L^1(\Omega)$ strongly, and that $\phi\in C_c^1(\Omega, \mathbb{R}^N)$. Indeed, $$ \big\vert \int_{\Omega} u_n\, \mbox{ div } \phi - u\, \mbox{ div } \phi\, \big\vert \leq \int_{\Omega} |u_n-u|\cdot |\mbox{ div } \phi | \rightarrow 0,\mbox{ as } n \rightarrow \infty.$$ Note that $ \int_{\Omega}u_n \mbox{ div } \phi \leq \sup\{\int_{\Omega} u_n \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}$, i.e. $$\int_{\Omega}u_n \mbox{ div } \phi \leq |u_n|_{BV}.$$ Taking $\lim\inf$ of both sides, we get $$\lim_{n\rightarrow \infty}\int_{\Omega}u_n \mbox{ div } \phi \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV}\,.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$$ From (1) and (2) we get
$$\int_{\Omega}u \mbox{ div } \phi \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV}\,.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)$$
Taking supremum on the left side of (3) over all $\mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1$, we get $|u|_{BV}\leq\lim \inf_{n\rightarrow \infty} |u_n|_{BV}$. Moreover, if $|u_n|_{BV}<\infty$ for all $n$ we get $|u|_{BV}<\infty$, i.e. $u\in BV$.

The weak convergence of $u_n\rightharpoonup u$ in $BV\,$ :
We say that a sequence $u_n$ in $BV(\Omega)$ converges weakly to some $u$ in $BV(\Omega)$ (i.e. $u_n\rightharpoonup u$ in $BV(\Omega)$) if and only if the following two convergences hold:
(i) $u_n\rightarrow u$ strongly in $L^1(\Omega)$
(ii) $Du_n \rightharpoonup Du$ weakly in $M(\Omega, \mathbb(R)^N)$.

Proposition: If $\{u_n\}$ is a sequence in $BV(\Omega)$ with $\sup_n |u_n|_{BV}< \infty$ that converges strongly $u_n \rightarrow u$ in $L^1(\Omega)$ then $u_n\rightharpoonup u$ in $BV$.
Proof:
As $u_n\rightarrow u$ in $L^1$ we only have to show the weak convergence $Du_n\rightharpoonup Du$.

For $\phi\in C_c^{\infty}(\Omega, \mathbb{R}^N)$ we have that $\langle Du_n, \phi\rangle =-\int_{\Omega}u_n \mbox{ div }\phi\rightarrow -\int_{\Omega}u \mbox{ div }\phi =\langle Du, \phi\rangle$.

As result of the density of $C_c^{\infty}(\Omega, \mathbb{R}^N)$ in $C_0(\Omega, \mathbb{R}^N)$ and the boundedness of $|u_n|_{BV}$ we conclude that $Du_n\rightharpoonup Du$.


APPENDIX: Basic definitions

Let $X$ be some set, and $2^X$ symbolically represent its power set, the collection of all subsets of $X$.

Measure: A mapping $\mu:2^X\rightarrow [0, \infty]$ is called a measure on $X$ if
(i) $\mu(\emptyset)=0$ and
(ii) $\mu(A)\leq \sum_{k=1}^{\infty} \mu(A_k)$, whenever $A \subset \cup_{k=1}^{\infty} A_k$.

$\mu-$ measurable set: A set $A\subset X$ is $\mu-$ measurable if for each set $B\subset X$,
$\mu(B)=\mu(B\cap A)+\mu(B\setminus A)$.


$\sigma$-algebra: A subset $\mathcal{A} \subset 2^X$ is called a $\sigma$-algebra if it satisfies the following three properties:
(i) $\mathcal{A}$ contains the null set and the set $X$, i.e. $\emptyset, X \in \mathcal{A}$.
(ii) $\mathcal{A}$ is closed under complementation: $A \in \mathcal{A}$ implies $X\setminus A \in \mathcal{A}$.
(iii) $\mathcal{A}$ is closed under countable unions: If $A_k \in \mathcal{A}$ for $k=1, 2, \dots$, then so is the union, $\cup_{k=1}^{\infty}A_k $.

Borel $\sigma$-algebra of $\mathbb{R}^n$ is the smallest $\sigma$-algebra of $\mathbb{R}^n$ containing the open subsets of $\mathbb{R}^n$.

Regular measure: A measure $\mu$ on $X$ is regular if for each set $A\subset X$ there exists a $\mu-$ measurable set $B$ such that $A\subset B$ and $\mu(A)=\mu(B)$.

Borel set: A Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement.

Borel measure: A measure $\mu$ on $\mathbb{R}^n$ is called Borel measure if every Borel set is $\mu-$ measurable.

Borel regular measure: A measure $\mu$ on $\mathbb{R}^n$ is called Borel regular measure if $\mu$ is Borel and for each $A \subset \mathbb{R}^n$ there exists a Borel set $B$ such that $A\subset B$ and $\mu(A)=\mu(B)$.

Radon measure: A measure $\mu$ on $\mathbb{R}^n$ is called Radon measure if $\mu$ is Borel regular and $\mu(K)< \infty$ for each compact set $K \subset \mathbb{R}^n$.