Showing posts with label Borel measure. Show all posts
Showing posts with label Borel measure. Show all posts

Monday, August 20, 2012

The coarea formula for BV functions

Today, we will discuss the coarea formula for $BV$ functions, established by Fleming and Rishel in 1960 (W. Fleming, R. Rishel, An integral formula for total gradient variation, Arch. Math. 11 (1960), 218-222.)

Let us first recall the lower semicontinuity property of the total variation with respect to the strong convergence in $L^1(\Omega)$:
Let $\{u_n\}_{n\in\Omega}$ be a sequence in $BV(\Omega)$ strongly converging to some $u$ in $L^1(\Omega)$ and satisfying $|u_{n}|_{BV} < \infty$. Then $u\in BV(\Omega)$ and $$|u|_{BV(\Omega)} \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV(\Omega)}.$$ The coarea formula is as stated as follows:

Coarea formula: Let $u$ be a given function in $BV(\Omega)$. Then for almost every $t$ in $\mathbb{R}$, the level set $E_t=\{ x\in \Omega \subset \mathbb{R}^N: u(x) > t\}$ of $u$ is a set of finite perimeter in $\Omega$, and
\begin{align}
&Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt,\\
&|u|_{BV(\Omega)}=|Du|(\Omega)=\int_{-\infty}^{\infty} \int_{\Omega}|D\chi_{E_t}|\, dt.
\end{align}
The second assertion above is often written in terms of the perimeter of level sets as follows:
\begin{align}
|u|_{BV(\Omega)}=\int_{-\infty}^{\infty} Per(E_t, \Omega) dt,
\end{align}
where $Per(E_t, \Omega)=\mathcal{H}^{N-1}(\Omega \cap \partial E_t)$ is the perimeter of the level set $E_t$.

Proof of the coarea formula: We follow the treatment of Variational Analysis in Sobolev and BV spaces by Attouch et al.

Part I: Proof of $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dt$:

Let us assume that $D\chi_{E_t}$ belongs to $\mathbf{M}(\Omega, \mathbb{R}^N)$, the set of all $\mathbb{R}^N-$ valued Borel measures which is the set of all the $\sigma-$ additive set functions $\mu:\mathcal{B}(\Omega)\rightarrow \mathbb{R}^N$, with $\mu(\emptyset)=0$. For all $t$ in $\mathbb{R}$ set
\begin{equation}
f_t=\left\{
\begin{array}{ll}
\chi_{E_t} & \mbox{if } t \geq 0 \\
-\chi_{\Omega \backslash E_t} & \mbox{if } t < 0 \end{array} \right. \end{equation} It is easy to see that $u(x)=\int_{-\infty}^{\infty}f_t(x)\,dt$ for all $x\in \Omega$. For all $\bar{\phi} \in C_c^1(\Omega, \mathbb{R}^N)$ we have \begin{align*} &\langle Du, \bar{\phi} \rangle \\ &= -\int_{\Omega} u \, \mbox{div} \,\bar{\phi} \, dx \\ & = - \int_{\Omega} \int_{-\infty}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx\\ &= - \int_{\Omega} \int_{-\infty}^{0} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \chi_{\Omega \backslash E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} (1-\chi_{E_t}) \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx - \int_{\Omega} \int_{-\infty}^{0} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= 0-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{-\infty}^{\infty} \langle D\chi_{E_t}, \bar{\phi}\rangle \,dt \end{align*} Hence, $Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt$, and $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dx dt$.

Part II: (coverse) Proof of $\int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dxdt\leq |Du|(\Omega) $:


Step i. We first assume that $u$ belongs to the space $\mathcal{A}(\Omega)$ of piecewise linear and continuous functions in $\Omega$. By linearity, one can assume that $u=a\cdot x+b$ with $a\in \mathbb{R}^N$ and $b\in \mathbb{R}$, so that

\begin{align*}
&\int_{\Omega} |D\chi_{E_t}|\\
&=\mathcal{H}(\Omega \cap \partial E_t)\\
&=\mathcal{H}(\Omega \cap \{x| a\cdot x +b=t\})\\
&=\int_{\Omega \cap \{x| a\cdot x +b=t\}} d\mathcal{H}^{N-1}(x)\\
&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)
\end{align*}
Thus we get,
\begin{align*}
&\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\\
&=|a|\mathcal{L}(\Omega)\\
&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)\\
&=\int_{\Omega} |Du|
\end{align*}
Hence we have,
\begin{align*}
\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt=|Du|(\Omega) \dots \mbox{ if } u=a\cdot x+b.
\end{align*}

Step ii. Now we prove that $\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\leq|Du|(\Omega)$ for all $u\in BV(\Omega)$. We know that the space of piecewise linear and continuous functions $\mathcal{A}(\Omega)$ is dense in $W^{1, 1}(\Omega)$ when equipped with the strong topology. We also know that the space $C^{\infty}\cap W^{1, 1}(\Omega)$ is dense in $BV$ when equipped with the intermediate convergence. Thus, there exists a sequence $\{u_n\}_{n\in \mathbb{N}} \in \mathcal{A}(\Omega)$ such that $u_n\rightharpoonup u$ for the intermediate convergence. For each of the functions $u_n$ we set $E_{n, t}:=\{x\in \Omega: u_n(x) > t\}$. Due to the intermediate convergence, we have
\begin{align*}
&\int_{\Omega}|Du|=\lim_{n\rightarrow \infty}\int_{\Omega}|Du_n| \dots \mbox{the intermediate convergence}\\
&=\lim_{n\rightarrow \infty} \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{from step i}\\
&\geq \int_{-\infty}^{\infty} \lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{Fatou's lemma}\\
\end{align*}
From the intermediate convergence we also have $u_n\rightarrow u$ in $L^1(\Omega)$. i.e.
\begin{align*}
\int_{\Omega} |u_n-u|=\int_{\Omega} \int_{-\infty}^{\infty} |\chi_{E_{n,t}}-\chi_{E_t}|\ dt dx = \int_{-\infty}^{\infty} \Big(\int_{\Omega} |\chi_{E_{n,t}}-\chi_{E_t}|\ dx \Big) dt=0.
\end{align*}
Thus, for a subsequence $E_{n_m, t}$, and for almost all $t \in \mathbb{R}$, $\chi_{E_{n_m, t}}\rightarrow \chi_{E_{n, t}}$ strongly in $L^1(\Omega)$. The lower semicontinuity of the total variation with respect to the strong convergence in $L^1(\Omega)$ we get $\lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n_m,t}}|\, dx \geq \int_{\Omega} |D\chi_{E_{t}}|\, dx$. Thus, we get,
$$ \int_{\Omega}|Du| \geq \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{t}}|\, dx dt. $$
This completes the proof!

(By the way, step ii also proves that $D\chi_{E_t} \in \mathbf{M}(\Omega, \mathbb{R}^N)$ for a.e. $t\in \mathbb{R}$, something that we used in Part I of the proof.)



Thursday, May 31, 2012

More on intermediate convergence


According to the vectorial version of the Riesz-Alexandroff representation theorem, the dual norm $\vert u \vert_{BV}=\Vert Du \Vert=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}$ is also the total mass $|Du|(\Omega)=\int_{\Omega}|Du|$ of the total variation $|Du|$ of the measure $Du$.

Moreover, from classical integration theory, the integral $\int_{\Omega}\phi \,d(Du)$ is well defined for all $Du$ integrable functions $\phi$ from $\Omega$ into $\mathbb{R}^N$, e.g. for functions in $C_b(\Omega, \mathbb{R}^N)$. For the same reasons, $\int_{\Omega}\phi\, d|Du|$ is well defined for all $|Du|$ integrable functions $\phi$, in particular for functions in $C_b(\Omega)$.

Thus, we can say that $|Du_n|\rightharpoonup |Du|$ narrowly in $M(\Omega)$ if $\int_{\Omega}\phi \, d|Du_n|\rightarrow \int_{\Omega}\phi\,d|Du|$, for all $\phi \in C_b(\Omega)$. If we choose $\phi\equiv 1$ on $\Omega$ then $\Vert Du_n \Vert \rightarrow \Vert Du \Vert$ i.e. $|u_n|_{BV}\rightarrow |u|_{BV}$.

Hence, $u_n\rightarrow u$ in $L^1(\Omega)$ and the narrow convergence of measures, $|Du_n|\rightharpoonup |Du|$ in $M(\Omega)$ implies the intermediate convergence, $u_n\rightharpoonup u$ (i.e. $u_n\rightarrow u$ in $L^1(\Omega)$ and $|u_n|_{BV}\rightarrow |u|_{BV}$).


We have the following proposition regarding the intermediate convergence.

Proposition
The following three assertions are equivalent
(i) $u_n\rightharpoonup u$ in the sense of intermediate convergence.
(ii) $u_n\rightharpoonup u$ in $BV(\Omega)$ and $\vert u_n \vert_{BV}\rightarrow \vert u \vert_{BV}$.
(iii) $u_n\rightarrow u$ strongly in $L^1(\Omega)$ and $\vert Du_n \vert\rightharpoonup \vert Du \vert$ narrowly in $M(\Omega)$.

Proof
The equivalence (i) to (ii) is a consequence of a proposition from the previous post. We have just seen above that (i) and (iii) are equivalent. We only need to prove that (ii) implies (iii).

Recall that $u_n\rightharpoonup u$ weakly in $BV(\Omega)$ means that
(a) $u_n\rightarrow u$ strongly in $L^1(\Omega)$ and
(b) the measures $Du_n\rightharpoonup Du$ weakly in $M(\Omega, \mathbb{R}^N)$.

Also, recall that for non-negative Borel measures $\mu_n$ and $\mu$ in $M(\Omega)$ the following statements are equivalent:
(c) $\mu_n(\Omega)\rightarrow \mu(\Omega)$ and $\mu(U)\leq \lim\inf_{n\rightarrow\infty}\mu_n(U)$ for all open subsets $U\subset \Omega$.
(d) $\mu_n\rightharpoonup \mu$ narrowly in $M(\Omega)$.

Let, $\mu_n=|Du_n|$ and $\mu=|Du|$. We have been given that $|Du_n|(\Omega)\rightarrow |Du|(\Omega)$ i.e. we have $\mu_n(\Omega)\rightarrow \mu(\Omega)$. For showing the narrow convergence $\mu_n\rightharpoonup \mu$ we just need to prove the lower-semicontinuity property on $U\subset\Omega$,
i.e. we need to show that for $\mu(U)\leq \lim\inf_{n\rightarrow\infty}\mu_n(U)$ for all open subsets $U\subset \Omega$,
i.e. we need to show that for $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$.

To this effect we use the proposition from the previous blog which says that if $u_n\in BV(\Omega)$ with $|u_n|_{BV(\Omega)}$ bounded, with $u_n\rightarrow u$ in $L^1(\Omega)$, then we have the lower semicontinuity property i.e. $|Du|(\Omega)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(\Omega)$, and $u\in BV(\Omega)$.

Let $U\subset\Omega$ be any open subset. We have $u_n\in BV(\Omega)$, thus as $U\subset\Omega$, we have $u_n\in BV(U)$. Thus, we have $\sup_n |Du_n|(U)\leq \sup_n |Du_n|(\Omega)<\infty$.

The weak convergence $u_n\rightharpoonup u$ in $L^1(\Omega)$ implies the strong convergence $u_n\rightarrow u$ in $L^1(\Omega)$ and thus the strong convergence $u_n\rightarrow u$ in $L^1(U)$ follows as $U\subset \Omega$.

 Now that we have the conditions in the proposition: $u_n\in BV(U)$, $\sup_n |Du_n|(U)<\infty$, and $u_n\rightarrow u$ in $L^1(U)$ we have the lower semicontinuity property: $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$. 

As we have $|Du_n|(\Omega)\rightarrow |Du|(\Omega)$ and $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$, from the equivalence of (c) and (d) we get the narrow convergence: $|Du_n|\rightharpoonup |Du_n|$ narrowly in $M(\Omega). \,\,\hspace{25pt} \square$.

In conclusion, intermediate convergence implies narrow convergence of $|Du_n|$.


Tuesday, February 21, 2012

There is something about the $BV$ space

I have been putting it off for a while. But now that I can write Latex in the blogger I can talk about $BV$ spaces.
Solutions of some mathematical problems which have discontinuities along one-codimensional manifolds where the first distributional derivatives are measures prompt us to consider the $BV$ space. I will refer to Attouch et al's book: Variational Analysis in Sobolev and BV spaces.

Definition of $BV$ space: We say that a function $u:\Omega\rightarrow \mathbb{R}$ is a function of bounded variations i.e. $u\in BV \,$ if and only if it belongs to $L^1(\Omega)$ and its gradient $Du$ in the distributional sense is in $M(\Omega, \mathbb{R}^N)$.

The following statements are equivalent.
(i) $u\in BV(\Omega)$
(ii) $u \in L^1(\Omega)$ and $u_{x_i}\in M(\Omega)$ for all $i=1, 2, ..., N$.
(iii) $u \in L^1(\Omega)$ and $\vert u \vert_{BV}<\infty$, where $\vert u\vert_{BV}:=\sup \{\langle Du, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_c(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}.$
(here $\langle Du, \,\mathbf{\phi}\rangle:=\sum_{i=1}^N \int_{\Omega}\, \mathbf{\phi}_i u_{x_i}$.)
(iv) $u \in L^1(\Omega)$ and $\vert u \vert_{BV}=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}<\infty$.

The implication (ii)$\implies $(iii) follows as $C_c(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$. The implication (ii)$\implies $(iii) follows as $C_c^{\infty}(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$ and $C_c(\Omega, \mathbb{R}^N)$.

Notations and facts:
$\Omega \subset \mathbb{R}^N$.
$C_0(\Omega, \mathbb{R}^N)$ is the space of all continuous functions that vanish at infinity. i.e. for a function $\phi\in C_0(\Omega, \mathbb{R}^N)$ the following is true: Given any $\epsilon > 0 $ there exists a compact set $K_{\epsilon} \subset \Omega$ such that $\sup_{x\in\Omega \backslash K_{\epsilon}}|\phi(x)|\leq \epsilon$.
The functions $\mathbf{\phi}$ in $C_0(\Omega, \mathbb{R}^N)$ are equipped with the uniform norm
$\Vert \phi \Vert_{\infty}:= \sup_{x \in \Omega}\{ |\phi(x)|\}$.
$C_c(\Omega, \mathbb{R}^N)$ is the subspace of $C_0(\Omega, \mathbb{R}^N)$ with a compact support in $\Omega$.
$C_b(\Omega,\mathbb{R}^N)$ is the subset of all bounded continuous functions from $\Omega$ into $\mathbb{R}^N$.

Density results:
$C_c(\Omega, \mathbb{R}^N)$ is dense in $C_0(\Omega, \mathbb{R}^N)$.
The space of infinitely differentiable and compactly supported functions $C_c^{\infty}(\Omega, \mathbb{R}^N)$ is dense is $C_0(\Omega, \mathbb{R}^N)$ and $C_c(\Omega, \mathbb{R}^N)$.

Duality results:
$M(\Omega, \mathbb{R}^N)$ denotes the space of all $\mathbb{R}^N$ valued Borel measures.
$M(\Omega, \mathbb{R}^N)$ is isomorphic to the product space $M^N(\Omega)$.
By the Riesz-Alexandroff representation theorem the dual of the space $C_0(\Omega, \mathbb{R}^N)$ (and thus of $C_c(\Omega, \mathbb{R}^N)$) can be isometrically identified with $M(\Omega, \mathbb{R}^N)$. i.e. any Borel measure $\mu$ is a bounded linear functional (continuous linear form if you like that) on $C_0(\Omega, \mathbb{R}^N)$ or $C_c(\Omega, \mathbb{R}^N)$ and the dual norms $\Vert\cdot \Vert_{C_{0}^{'}(\Omega, \mathbb{R}^N)}$ and $\Vert \cdot \Vert_{C_{c}^{'}(\Omega, \mathbb{R}^N)}$ are equal to the total mass $|\cdot|(\Omega)$ :
$$|\mu|(\Omega)\equiv \int_{\Omega}|\mu|=\sup\{ \langle \mu, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_0(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1 \} =\sup\{ \langle \mu, \,\mathbf{\phi}\rangle: \mathbf{\phi} \in C_c(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1 \}.$$ Here, $\langle \mu, \,\phi\rangle\equiv\mu(\phi)\equiv\int_{\Omega} \phi \, d\mu \equiv \sum_{i=1}^N\int_{\Omega} \phi_i d\mu_i.$

The relation between $BV$ and the Sobolev space $W^{1, 1}$:

According to Radon-Nykodym theorem there exists $\nabla u \in L^1(\Omega, \mathbb{R}^N)$ and measure $D_s u$ that is singular with respect to $\mathcal{L}^N|_{\Omega}$, the $N-$ dimensional Lebesgue measure restricted to $\Omega$, such that: $$Du=\nabla u \, \mathcal{L}^N|_{\Omega}+ D_s u.$$ Thus, $W^{1, 1}$ is a subspace of the $BV-$ space and for functions in $W^{1, 1}$ we can write $Du=\nabla u$.

Norm on the $BV$ space:

The $BV$ space is equipped with the norm $\Vert u \Vert_{BV}=\Vert u \Vert_{L^1}+\vert u\vert_{BV}$.
Equipped with this norm the space of $BV$ functions is complete. The completeness of the $BV$ space follows from the completeness of $L^1$ and lower semicontinuity property which is stated below.

Proposition about the lower semicontinuity property of $BV-$ seminorm:
If $\{u_n\}$ is a sequence in $BV(\Omega)$ with $\sup_n |u_n|_{BV}< \infty$ that converges strongly $u_n \rightarrow u$ in $L^1(\Omega)$ then $|u|_{BV}\leq\lim \inf_{n\rightarrow \infty} |u_n|_{BV}$ and $u\in BV(\Omega)$.
Proof:
We use the following definition of BV seminorm here: $u \in L^1(\Omega)$ and $\vert u \vert_{BV}=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}<\infty$.
Let $\phi\in C_c^1(\Omega, \mathbb{R}^N)$ with $\Vert \phi \Vert_{\infty}\leq 1$.
We first observe that
$$\lim_{n\rightarrow \infty}\int_{\Omega} u_n\, \mbox{ div } \phi =\int_{\Omega} u\, \mbox{ div } \phi. \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$$
This follows as $u_n\rightarrow u$ in $L^1(\Omega)$ strongly, and that $\phi\in C_c^1(\Omega, \mathbb{R}^N)$. Indeed, $$ \big\vert \int_{\Omega} u_n\, \mbox{ div } \phi - u\, \mbox{ div } \phi\, \big\vert \leq \int_{\Omega} |u_n-u|\cdot |\mbox{ div } \phi | \rightarrow 0,\mbox{ as } n \rightarrow \infty.$$ Note that $ \int_{\Omega}u_n \mbox{ div } \phi \leq \sup\{\int_{\Omega} u_n \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}$, i.e. $$\int_{\Omega}u_n \mbox{ div } \phi \leq |u_n|_{BV}.$$ Taking $\lim\inf$ of both sides, we get $$\lim_{n\rightarrow \infty}\int_{\Omega}u_n \mbox{ div } \phi \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV}\,.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)$$ From (1) and (2) we get
$$\int_{\Omega}u \mbox{ div } \phi \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV}\,.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)$$
Taking supremum on the left side of (3) over all $\mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1$, we get $|u|_{BV}\leq\lim \inf_{n\rightarrow \infty} |u_n|_{BV}$. Moreover, if $|u_n|_{BV}<\infty$ for all $n$ we get $|u|_{BV}<\infty$, i.e. $u\in BV$.

The weak convergence of $u_n\rightharpoonup u$ in $BV\,$ :
We say that a sequence $u_n$ in $BV(\Omega)$ converges weakly to some $u$ in $BV(\Omega)$ (i.e. $u_n\rightharpoonup u$ in $BV(\Omega)$) if and only if the following two convergences hold:
(i) $u_n\rightarrow u$ strongly in $L^1(\Omega)$
(ii) $Du_n \rightharpoonup Du$ weakly in $M(\Omega, \mathbb(R)^N)$.

Proposition: If $\{u_n\}$ is a sequence in $BV(\Omega)$ with $\sup_n |u_n|_{BV}< \infty$ that converges strongly $u_n \rightarrow u$ in $L^1(\Omega)$ then $u_n\rightharpoonup u$ in $BV$.
Proof:
As $u_n\rightarrow u$ in $L^1$ we only have to show the weak convergence $Du_n\rightharpoonup Du$.

For $\phi\in C_c^{\infty}(\Omega, \mathbb{R}^N)$ we have that $\langle Du_n, \phi\rangle =-\int_{\Omega}u_n \mbox{ div }\phi\rightarrow -\int_{\Omega}u \mbox{ div }\phi =\langle Du, \phi\rangle$.

As result of the density of $C_c^{\infty}(\Omega, \mathbb{R}^N)$ in $C_0(\Omega, \mathbb{R}^N)$ and the boundedness of $|u_n|_{BV}$ we conclude that $Du_n\rightharpoonup Du$.


APPENDIX: Basic definitions

Let $X$ be some set, and $2^X$ symbolically represent its power set, the collection of all subsets of $X$.

Measure: A mapping $\mu:2^X\rightarrow [0, \infty]$ is called a measure on $X$ if
(i) $\mu(\emptyset)=0$ and
(ii) $\mu(A)\leq \sum_{k=1}^{\infty} \mu(A_k)$, whenever $A \subset \cup_{k=1}^{\infty} A_k$.

$\mu-$ measurable set: A set $A\subset X$ is $\mu-$ measurable if for each set $B\subset X$,
$\mu(B)=\mu(B\cap A)+\mu(B\setminus A)$.


$\sigma$-algebra: A subset $\mathcal{A} \subset 2^X$ is called a $\sigma$-algebra if it satisfies the following three properties:
(i) $\mathcal{A}$ contains the null set and the set $X$, i.e. $\emptyset, X \in \mathcal{A}$.
(ii) $\mathcal{A}$ is closed under complementation: $A \in \mathcal{A}$ implies $X\setminus A \in \mathcal{A}$.
(iii) $\mathcal{A}$ is closed under countable unions: If $A_k \in \mathcal{A}$ for $k=1, 2, \dots$, then so is the union, $\cup_{k=1}^{\infty}A_k $.

Borel $\sigma$-algebra of $\mathbb{R}^n$ is the smallest $\sigma$-algebra of $\mathbb{R}^n$ containing the open subsets of $\mathbb{R}^n$.

Regular measure: A measure $\mu$ on $X$ is regular if for each set $A\subset X$ there exists a $\mu-$ measurable set $B$ such that $A\subset B$ and $\mu(A)=\mu(B)$.

Borel set: A Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement.

Borel measure: A measure $\mu$ on $\mathbb{R}^n$ is called Borel measure if every Borel set is $\mu-$ measurable.

Borel regular measure: A measure $\mu$ on $\mathbb{R}^n$ is called Borel regular measure if $\mu$ is Borel and for each $A \subset \mathbb{R}^n$ there exists a Borel set $B$ such that $A\subset B$ and $\mu(A)=\mu(B)$.

Radon measure: A measure $\mu$ on $\mathbb{R}^n$ is called Radon measure if $\mu$ is Borel regular and $\mu(K)< \infty$ for each compact set $K \subset \mathbb{R}^n$.