Showing posts with label intermediate convergence. Show all posts
Showing posts with label intermediate convergence. Show all posts

Monday, August 20, 2012

The coarea formula for BV functions

Today, we will discuss the coarea formula for $BV$ functions, established by Fleming and Rishel in 1960 (W. Fleming, R. Rishel, An integral formula for total gradient variation, Arch. Math. 11 (1960), 218-222.)

Let us first recall the lower semicontinuity property of the total variation with respect to the strong convergence in $L^1(\Omega)$:
Let $\{u_n\}_{n\in\Omega}$ be a sequence in $BV(\Omega)$ strongly converging to some $u$ in $L^1(\Omega)$ and satisfying $|u_{n}|_{BV} < \infty$. Then $u\in BV(\Omega)$ and $$|u|_{BV(\Omega)} \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV(\Omega)}.$$ The coarea formula is as stated as follows:

Coarea formula: Let $u$ be a given function in $BV(\Omega)$. Then for almost every $t$ in $\mathbb{R}$, the level set $E_t=\{ x\in \Omega \subset \mathbb{R}^N: u(x) > t\}$ of $u$ is a set of finite perimeter in $\Omega$, and
\begin{align}
&Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt,\\
&|u|_{BV(\Omega)}=|Du|(\Omega)=\int_{-\infty}^{\infty} \int_{\Omega}|D\chi_{E_t}|\, dt.
\end{align}
The second assertion above is often written in terms of the perimeter of level sets as follows:
\begin{align}
|u|_{BV(\Omega)}=\int_{-\infty}^{\infty} Per(E_t, \Omega) dt,
\end{align}
where $Per(E_t, \Omega)=\mathcal{H}^{N-1}(\Omega \cap \partial E_t)$ is the perimeter of the level set $E_t$.

Proof of the coarea formula: We follow the treatment of Variational Analysis in Sobolev and BV spaces by Attouch et al.

Part I: Proof of $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dt$:

Let us assume that $D\chi_{E_t}$ belongs to $\mathbf{M}(\Omega, \mathbb{R}^N)$, the set of all $\mathbb{R}^N-$ valued Borel measures which is the set of all the $\sigma-$ additive set functions $\mu:\mathcal{B}(\Omega)\rightarrow \mathbb{R}^N$, with $\mu(\emptyset)=0$. For all $t$ in $\mathbb{R}$ set
\begin{equation}
f_t=\left\{
\begin{array}{ll}
\chi_{E_t} & \mbox{if } t \geq 0 \\
-\chi_{\Omega \backslash E_t} & \mbox{if } t < 0 \end{array} \right. \end{equation} It is easy to see that $u(x)=\int_{-\infty}^{\infty}f_t(x)\,dt$ for all $x\in \Omega$. For all $\bar{\phi} \in C_c^1(\Omega, \mathbb{R}^N)$ we have \begin{align*} &\langle Du, \bar{\phi} \rangle \\ &= -\int_{\Omega} u \, \mbox{div} \,\bar{\phi} \, dx \\ & = - \int_{\Omega} \int_{-\infty}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx\\ &= - \int_{\Omega} \int_{-\infty}^{0} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \chi_{\Omega \backslash E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} (1-\chi_{E_t}) \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx - \int_{\Omega} \int_{-\infty}^{0} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= 0-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{-\infty}^{\infty} \langle D\chi_{E_t}, \bar{\phi}\rangle \,dt \end{align*} Hence, $Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt$, and $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dx dt$.

Part II: (coverse) Proof of $\int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dxdt\leq |Du|(\Omega) $:


Step i. We first assume that $u$ belongs to the space $\mathcal{A}(\Omega)$ of piecewise linear and continuous functions in $\Omega$. By linearity, one can assume that $u=a\cdot x+b$ with $a\in \mathbb{R}^N$ and $b\in \mathbb{R}$, so that

\begin{align*}
&\int_{\Omega} |D\chi_{E_t}|\\
&=\mathcal{H}(\Omega \cap \partial E_t)\\
&=\mathcal{H}(\Omega \cap \{x| a\cdot x +b=t\})\\
&=\int_{\Omega \cap \{x| a\cdot x +b=t\}} d\mathcal{H}^{N-1}(x)\\
&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)
\end{align*}
Thus we get,
\begin{align*}
&\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\\
&=|a|\mathcal{L}(\Omega)\\
&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)\\
&=\int_{\Omega} |Du|
\end{align*}
Hence we have,
\begin{align*}
\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt=|Du|(\Omega) \dots \mbox{ if } u=a\cdot x+b.
\end{align*}

Step ii. Now we prove that $\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\leq|Du|(\Omega)$ for all $u\in BV(\Omega)$. We know that the space of piecewise linear and continuous functions $\mathcal{A}(\Omega)$ is dense in $W^{1, 1}(\Omega)$ when equipped with the strong topology. We also know that the space $C^{\infty}\cap W^{1, 1}(\Omega)$ is dense in $BV$ when equipped with the intermediate convergence. Thus, there exists a sequence $\{u_n\}_{n\in \mathbb{N}} \in \mathcal{A}(\Omega)$ such that $u_n\rightharpoonup u$ for the intermediate convergence. For each of the functions $u_n$ we set $E_{n, t}:=\{x\in \Omega: u_n(x) > t\}$. Due to the intermediate convergence, we have
\begin{align*}
&\int_{\Omega}|Du|=\lim_{n\rightarrow \infty}\int_{\Omega}|Du_n| \dots \mbox{the intermediate convergence}\\
&=\lim_{n\rightarrow \infty} \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{from step i}\\
&\geq \int_{-\infty}^{\infty} \lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{Fatou's lemma}\\
\end{align*}
From the intermediate convergence we also have $u_n\rightarrow u$ in $L^1(\Omega)$. i.e.
\begin{align*}
\int_{\Omega} |u_n-u|=\int_{\Omega} \int_{-\infty}^{\infty} |\chi_{E_{n,t}}-\chi_{E_t}|\ dt dx = \int_{-\infty}^{\infty} \Big(\int_{\Omega} |\chi_{E_{n,t}}-\chi_{E_t}|\ dx \Big) dt=0.
\end{align*}
Thus, for a subsequence $E_{n_m, t}$, and for almost all $t \in \mathbb{R}$, $\chi_{E_{n_m, t}}\rightarrow \chi_{E_{n, t}}$ strongly in $L^1(\Omega)$. The lower semicontinuity of the total variation with respect to the strong convergence in $L^1(\Omega)$ we get $\lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n_m,t}}|\, dx \geq \int_{\Omega} |D\chi_{E_{t}}|\, dx$. Thus, we get,
$$ \int_{\Omega}|Du| \geq \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{t}}|\, dx dt. $$
This completes the proof!

(By the way, step ii also proves that $D\chi_{E_t} \in \mathbf{M}(\Omega, \mathbb{R}^N)$ for a.e. $t\in \mathbb{R}$, something that we used in Part I of the proof.)



Thursday, May 31, 2012

More on intermediate convergence


According to the vectorial version of the Riesz-Alexandroff representation theorem, the dual norm $\vert u \vert_{BV}=\Vert Du \Vert=\sup \{\int_{\Omega} u \,\mbox{ div } \mathbf{\phi}: \mathbf{\phi} \in C_c^1(\Omega, \mathbb{R}^N) \mbox{ and } \Vert \mathbf{\phi} \Vert_{\infty}\leq 1\}$ is also the total mass $|Du|(\Omega)=\int_{\Omega}|Du|$ of the total variation $|Du|$ of the measure $Du$.

Moreover, from classical integration theory, the integral $\int_{\Omega}\phi \,d(Du)$ is well defined for all $Du$ integrable functions $\phi$ from $\Omega$ into $\mathbb{R}^N$, e.g. for functions in $C_b(\Omega, \mathbb{R}^N)$. For the same reasons, $\int_{\Omega}\phi\, d|Du|$ is well defined for all $|Du|$ integrable functions $\phi$, in particular for functions in $C_b(\Omega)$.

Thus, we can say that $|Du_n|\rightharpoonup |Du|$ narrowly in $M(\Omega)$ if $\int_{\Omega}\phi \, d|Du_n|\rightarrow \int_{\Omega}\phi\,d|Du|$, for all $\phi \in C_b(\Omega)$. If we choose $\phi\equiv 1$ on $\Omega$ then $\Vert Du_n \Vert \rightarrow \Vert Du \Vert$ i.e. $|u_n|_{BV}\rightarrow |u|_{BV}$.

Hence, $u_n\rightarrow u$ in $L^1(\Omega)$ and the narrow convergence of measures, $|Du_n|\rightharpoonup |Du|$ in $M(\Omega)$ implies the intermediate convergence, $u_n\rightharpoonup u$ (i.e. $u_n\rightarrow u$ in $L^1(\Omega)$ and $|u_n|_{BV}\rightarrow |u|_{BV}$).


We have the following proposition regarding the intermediate convergence.

Proposition
The following three assertions are equivalent
(i) $u_n\rightharpoonup u$ in the sense of intermediate convergence.
(ii) $u_n\rightharpoonup u$ in $BV(\Omega)$ and $\vert u_n \vert_{BV}\rightarrow \vert u \vert_{BV}$.
(iii) $u_n\rightarrow u$ strongly in $L^1(\Omega)$ and $\vert Du_n \vert\rightharpoonup \vert Du \vert$ narrowly in $M(\Omega)$.

Proof
The equivalence (i) to (ii) is a consequence of a proposition from the previous post. We have just seen above that (i) and (iii) are equivalent. We only need to prove that (ii) implies (iii).

Recall that $u_n\rightharpoonup u$ weakly in $BV(\Omega)$ means that
(a) $u_n\rightarrow u$ strongly in $L^1(\Omega)$ and
(b) the measures $Du_n\rightharpoonup Du$ weakly in $M(\Omega, \mathbb{R}^N)$.

Also, recall that for non-negative Borel measures $\mu_n$ and $\mu$ in $M(\Omega)$ the following statements are equivalent:
(c) $\mu_n(\Omega)\rightarrow \mu(\Omega)$ and $\mu(U)\leq \lim\inf_{n\rightarrow\infty}\mu_n(U)$ for all open subsets $U\subset \Omega$.
(d) $\mu_n\rightharpoonup \mu$ narrowly in $M(\Omega)$.

Let, $\mu_n=|Du_n|$ and $\mu=|Du|$. We have been given that $|Du_n|(\Omega)\rightarrow |Du|(\Omega)$ i.e. we have $\mu_n(\Omega)\rightarrow \mu(\Omega)$. For showing the narrow convergence $\mu_n\rightharpoonup \mu$ we just need to prove the lower-semicontinuity property on $U\subset\Omega$,
i.e. we need to show that for $\mu(U)\leq \lim\inf_{n\rightarrow\infty}\mu_n(U)$ for all open subsets $U\subset \Omega$,
i.e. we need to show that for $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$.

To this effect we use the proposition from the previous blog which says that if $u_n\in BV(\Omega)$ with $|u_n|_{BV(\Omega)}$ bounded, with $u_n\rightarrow u$ in $L^1(\Omega)$, then we have the lower semicontinuity property i.e. $|Du|(\Omega)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(\Omega)$, and $u\in BV(\Omega)$.

Let $U\subset\Omega$ be any open subset. We have $u_n\in BV(\Omega)$, thus as $U\subset\Omega$, we have $u_n\in BV(U)$. Thus, we have $\sup_n |Du_n|(U)\leq \sup_n |Du_n|(\Omega)<\infty$.

The weak convergence $u_n\rightharpoonup u$ in $L^1(\Omega)$ implies the strong convergence $u_n\rightarrow u$ in $L^1(\Omega)$ and thus the strong convergence $u_n\rightarrow u$ in $L^1(U)$ follows as $U\subset \Omega$.

 Now that we have the conditions in the proposition: $u_n\in BV(U)$, $\sup_n |Du_n|(U)<\infty$, and $u_n\rightarrow u$ in $L^1(U)$ we have the lower semicontinuity property: $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$. 

As we have $|Du_n|(\Omega)\rightarrow |Du|(\Omega)$ and $|Du|(U)\leq \lim\inf_{n\rightarrow\infty}|Du_n|(U)$ for all open subsets $U\subset \Omega$, from the equivalence of (c) and (d) we get the narrow convergence: $|Du_n|\rightharpoonup |Du_n|$ narrowly in $M(\Omega). \,\,\hspace{25pt} \square$.

In conclusion, intermediate convergence implies narrow convergence of $|Du_n|$.


Friday, February 24, 2012

Narrow convergence of measures and intermediate convergence of BV functions




Recall By the Riesz-Alexandroff representation theorem the dual of the space $C_0(\Omega,\mathbb{R}^N)$ (and thus of $C_c(\Omega,\mathbb{R}^N)$ can be isometrically identified with $M(\Omega,\mathbb{R}^N)$. i.e. any Borel measure $\mu$ is a bounded linear functional (continuous linear form if you like that) on $C_0(\Omega,\mathbb{R}^N)$ or $C_c(\Omega,\mathbb{R}^N)$. Thus, the weak convergence of a sequence of Borel measures $\mu_n$ is defined as follows.

Weak convergence of Borel measures: We say that a sequence of Borel measures $\mu_n$ converges weakly to $\mu$ i.e. $\mu_n\rightharpoonup \mu$ if $\langle\mu_n, \phi \rangle \rightarrow \langle \mu, \phi\rangle $ for all $\phi \in C_0(\Omega,\mathbb{R}^N)$.

Here, $\langle \mu, \,\phi\rangle\equiv\mu(\phi)\equiv\int_{\Omega} \phi \, d\mu \equiv \sum_{i=1}^N\int_{\Omega} \phi_i d\mu_i$.

Narrow convergence: A sequence $\{\mu_n\}$ in $M(\Omega, \mathbb{R}^N)$ narrowly converges to $\mu$ ($\mu_n\rightharpoonup \mu$ narrowly) in $M(\Omega, \mathbb{R}^N)$ if and only if $$\int_{\Omega} f\, d\mu_n \rightarrow \int_{\Omega} f d\mu,$$ for all $f \in C_b(\Omega, \mathbb{R}^N)$.

Narrow convergence is stronger than weak convergence.
If $\Omega=(0, 1)$ and $\mu_n=\delta_{\frac{1}{n}}$ then $\mu_n\rightharpoonup 0$ weakly. This is because for all $\phi \in C_0(\Omega)$, we have, $\mu_n(\phi)=\phi(\frac{1}{n})\rightarrow \phi(0)=0=\mu(\phi)$.

On the other hand, if $\phi\equiv1$ on $\Omega$, (note that $\phi \not\in C_0(\Omega)$ but $\phi \in C_b(\Omega)$), then we see that $\int_{\Omega} d\mu_n=\mu_n(\Omega)=1$ for all $n$. Essentially what happened with $\mu_n=\delta_{\frac{1}{n}}$ is that it converges weakly to $\mu=0$, but $\mu_n(\Omega)$, the size of $\Omega$ measured in $\mu_n$ does not converge to the size of $\Omega$ in measure $\mu(=0)$, that is $\mu_n\rightharpoonup \mu$ but $\mu_n(\Omega)\nrightarrow \mu(\Omega)$.

We have the following compactness result for the narrow topology.

PROKHOROV's sequential compactness theorem
If for a bounded subset $\mathcal{H}$ of $M^+(\Omega)$ it is true that for all $\epsilon$ there exists a compact subset $K_{\epsilon}\subset \Omega$ such that $\sup\{\mu(\Omega\ K_{\epsilon}):\mu\in \mathcal{H}\}\leq \epsilon$, then $\mathcal{H}$ is sequentially compact for the narrow topology.

The following equivalence proposition says that the convergence $\mu_n(\Omega)\rightarrow \mu(\Omega)$ is precisely what we need to ensure narrow convergence of measures.

Proposition
Let $\mu_n$ and $\mu$ be in $M^+(\Omega)$, non-negative Borel measures, then the following assertions are equivalent:
(i) $\mu_n\rightharpoonup \mu$ narrowly.
(ii)$\mu_n(\Omega)\rightarrow \mu(\Omega)$ and $\mu \rightharpoonup \mu$ weakly.

Proof
Note that as narrow convergence is stronger than weak convergence, it is clear that if $\mu_n\rightarrow \mu$ narrowly then $\mu \rightharpoonup \mu$. Also, $\mu_n(\Omega)\rightarrow \mu(\Omega)$ follows by taking $f\equiv 1$.

So, we need to only prove that if $\mu \rightharpoonup \mu$ weakly and $\mu_n(\Omega)\rightarrow \mu(\Omega)$ then $\mu_n\rightharpoonup \mu$ narrowly. That is, we need to show that for any function $f$ in $C_b(\Omega, \mathbb{R}^N)$ we have $\big| \int_{\Omega} fd\mu_n - \int_{\Omega} fd\mu \big|\rightarrow 0$. To do this we add and subtract $\int_{\Omega} f\,\phi d\mu_n$ and $\int_{\Omega} f\,\phi d\mu$ where $\phi$ is continuous function that is compactly supported in $\Omega$. The result follows as $f$ is bounded i.e. $\Vert f \Vert_{\infty}$ is a finite number and $\int_{\Omega} f\phi d\mu_n \rightarrow \int_{\Omega} f\phi d\mu$ due to compact support of $\phi$ in $\Omega . \hspace{25pt}\square$

More equivalence proposition
Let $\mu_n$ and $\mu$ be in $M^+(\Omega)$, non-negative Borel measures, then the following assertions are equivalent:
(i) $\mu_n\rightharpoonup \mu$ narrowly.
(ii) $\mu_n(\Omega)\rightarrow \mu(\Omega)$ and $\mu(U)\leq \lim\inf_{n\rightarrow \infty} \mu_n(U)$ for all open subsets $U\subset \Omega$.
(iii) $\mu_n(\Omega)\rightarrow \mu(\Omega)$ and $\mu(F)\geq \lim\inf_{n\rightarrow \infty} \mu_n(F)$ for all closed subsets $F\subset \Omega$.
(iv) $\mu_n(B)\rightarrow \mu(B)$ for all Borel subsets $B\subset\Omega.\,\,\hspace{25pt}\square$

Ok, so far so good. But images are not necessarily continuous functions. They might have jump discontinuities, i.e. edges. For this the following result due to Marle (Measure et probabilities) is helpful:

Proposition
Let $\mu_n$ and $\mu$ be non-negative Borel measures $M^+(\Omega)$, with $\mu_n\rightharpoonup \mu$ narrowly and let $f$ be a $\mu_n$ measurable bounded function for all $n$, such that it is discontinuous only on a set of null $\mu-$ measurable set then
$$\hspace{25pt}\int_{\Omega} f\, d\mu_n \rightarrow \int_{\Omega} f\, d\mu \hspace{25pt}\square$$

Now, that we have seen a notion of convergence for sequence of measures that is stronger than weak convergence, let's look at the a notion of convergence for sequence of functions in $BV$ space that is stronger than weak convergence.

Intermediate convergence
Let $\{u_n\}$ be a sequence in $BV(\Omega)$ and $u\in BV(\Omega)$. we say that $u_n\rightharpoonup u$ intermediately (or in the sense of intermediate convergence) if and only if
$$u_n\rightarrow u \mbox{ in } L^1(\Omega),$$
$$\hspace{25pt}\vert u_n\vert_{BV}\rightarrow \vert u\vert_{BV}\,\,\hspace{25pt}\square$$

Recall, from the previous post that for $\{u_n\}\in BV(\Omega)$ with bounded TV mass and $u_n\rightarrow u$ strongly in $L^1(\Omega)$, then we have $u_n\rightharpoonup u$ in $BV$, but $\vert u \vert_{BV}\leq \lim\inf_{n\rightarrow \infty}\vert u_n \vert_{BV}$ i.e. some of the mass is lost.

Ok, now I am hungry, so more about this tomorrow.