Today, we will discuss the coarea formula for $BV$ functions, established by Fleming and Rishel in 1960 (W. Fleming, R. Rishel,

Let us first recall

Let $\{u_n\}_{n\in\Omega}$ be a sequence in $BV(\Omega)$ strongly converging to some $u$ in $L^1(\Omega)$ and satisfying $|u_{n}|_{BV} < \infty$. Then $u\in BV(\Omega)$ and $$|u|_{BV(\Omega)} \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV(\Omega)}.$$ The coarea formula is as stated as follows:

\begin{align}

&Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt,\\

&|u|_{BV(\Omega)}=|Du|(\Omega)=\int_{-\infty}^{\infty} \int_{\Omega}|D\chi_{E_t}|\, dt.

\end{align}

The second assertion above is often written in terms of the perimeter of level sets as follows:

\begin{align}

|u|_{BV(\Omega)}=\int_{-\infty}^{\infty} Per(E_t, \Omega) dt,

\end{align}

where $Per(E_t, \Omega)=\mathcal{H}^{N-1}(\Omega \cap \partial E_t)$ is the perimeter of the level set $E_t$.

Let us assume that $D\chi_{E_t}$ belongs to $\mathbf{M}(\Omega, \mathbb{R}^N)$, the set of all $\mathbb{R}^N-$ valued Borel measures which is the set of all the $\sigma-$ additive set functions $\mu:\mathcal{B}(\Omega)\rightarrow \mathbb{R}^N$, with $\mu(\emptyset)=0$. For all $t$ in $\mathbb{R}$ set

\begin{equation}

f_t=\left\{

\begin{array}{ll}

\chi_{E_t} & \mbox{if } t \geq 0 \\

-\chi_{\Omega \backslash E_t} & \mbox{if } t < 0 \end{array} \right. \end{equation} It is easy to see that $u(x)=\int_{-\infty}^{\infty}f_t(x)\,dt$ for all $x\in \Omega$. For all $\bar{\phi} \in C_c^1(\Omega, \mathbb{R}^N)$ we have \begin{align*} &\langle Du, \bar{\phi} \rangle \\ &= -\int_{\Omega} u \, \mbox{div} \,\bar{\phi} \, dx \\ & = - \int_{\Omega} \int_{-\infty}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx\\ &= - \int_{\Omega} \int_{-\infty}^{0} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \chi_{\Omega \backslash E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} (1-\chi_{E_t}) \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx - \int_{\Omega} \int_{-\infty}^{0} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= 0-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{-\infty}^{\infty} \langle D\chi_{E_t}, \bar{\phi}\rangle \,dt \end{align*} Hence, $Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt$, and $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dx dt$.

\begin{align*}

&\int_{\Omega} |D\chi_{E_t}|\\

&=\mathcal{H}(\Omega \cap \partial E_t)\\

&=\mathcal{H}(\Omega \cap \{x| a\cdot x +b=t\})\\

&=\int_{\Omega \cap \{x| a\cdot x +b=t\}} d\mathcal{H}^{N-1}(x)\\

&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)

\end{align*}

Thus we get,

\begin{align*}

&\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\\

&=|a|\mathcal{L}(\Omega)\\

&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)\\

&=\int_{\Omega} |Du|

\end{align*}

Hence we have,

\begin{align*}

\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt=|Du|(\Omega) \dots \mbox{ if } u=a\cdot x+b.

\end{align*}

\begin{align*}

&\int_{\Omega}|Du|=\lim_{n\rightarrow \infty}\int_{\Omega}|Du_n| \dots \mbox{the intermediate convergence}\\

&=\lim_{n\rightarrow \infty} \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{from step i}\\

&\geq \int_{-\infty}^{\infty} \lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{Fatou's lemma}\\

\end{align*}

From the intermediate convergence we also have $u_n\rightarrow u$ in $L^1(\Omega)$. i.e.

\begin{align*}

\int_{\Omega} |u_n-u|=\int_{\Omega} \int_{-\infty}^{\infty} |\chi_{E_{n,t}}-\chi_{E_t}|\ dt dx = \int_{-\infty}^{\infty} \Big(\int_{\Omega} |\chi_{E_{n,t}}-\chi_{E_t}|\ dx \Big) dt=0.

\end{align*}

Thus, for a subsequence $E_{n_m, t}$, and for almost all $t \in \mathbb{R}$, $\chi_{E_{n_m, t}}\rightarrow \chi_{E_{n, t}}$ strongly in $L^1(\Omega)$. The lower semicontinuity of the total variation with respect to the strong convergence in $L^1(\Omega)$ we get $\lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n_m,t}}|\, dx \geq \int_{\Omega} |D\chi_{E_{t}}|\, dx$. Thus, we get,

$$ \int_{\Omega}|Du| \geq \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{t}}|\, dx dt. $$

This completes the proof!

(By the way, step ii also proves that $D\chi_{E_t} \in \mathbf{M}(\Omega, \mathbb{R}^N)$ for a.e. $t\in \mathbb{R}$, something that we used in Part I of the proof.)

*An integral formula for total gradient variation*, Arch. Math.**11**(1960), 218-222.)Let us first recall

**the lower semicontinuity property**of the total variation with respect to the strong convergence in $L^1(\Omega)$:Let $\{u_n\}_{n\in\Omega}$ be a sequence in $BV(\Omega)$ strongly converging to some $u$ in $L^1(\Omega)$ and satisfying $|u_{n}|_{BV} < \infty$. Then $u\in BV(\Omega)$ and $$|u|_{BV(\Omega)} \leq \lim\inf_{n\rightarrow \infty} |u_n|_{BV(\Omega)}.$$ The coarea formula is as stated as follows:

**Coarea formula:**Let $u$ be a given function in $BV(\Omega)$. Then for almost every $t$ in $\mathbb{R}$, the level set $E_t=\{ x\in \Omega \subset \mathbb{R}^N: u(x) > t\}$ of $u$ is a set of finite perimeter in $\Omega$, and\begin{align}

&Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt,\\

&|u|_{BV(\Omega)}=|Du|(\Omega)=\int_{-\infty}^{\infty} \int_{\Omega}|D\chi_{E_t}|\, dt.

\end{align}

The second assertion above is often written in terms of the perimeter of level sets as follows:

\begin{align}

|u|_{BV(\Omega)}=\int_{-\infty}^{\infty} Per(E_t, \Omega) dt,

\end{align}

where $Per(E_t, \Omega)=\mathcal{H}^{N-1}(\Omega \cap \partial E_t)$ is the perimeter of the level set $E_t$.

**Proof of the coarea formula**: We follow the treatment of Variational Analysis in Sobolev and BV spaces by Attouch et al.**Part I:**Proof of $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dt$:Let us assume that $D\chi_{E_t}$ belongs to $\mathbf{M}(\Omega, \mathbb{R}^N)$, the set of all $\mathbb{R}^N-$ valued Borel measures which is the set of all the $\sigma-$ additive set functions $\mu:\mathcal{B}(\Omega)\rightarrow \mathbb{R}^N$, with $\mu(\emptyset)=0$. For all $t$ in $\mathbb{R}$ set

\begin{equation}

f_t=\left\{

\begin{array}{ll}

\chi_{E_t} & \mbox{if } t \geq 0 \\

-\chi_{\Omega \backslash E_t} & \mbox{if } t < 0 \end{array} \right. \end{equation} It is easy to see that $u(x)=\int_{-\infty}^{\infty}f_t(x)\,dt$ for all $x\in \Omega$. For all $\bar{\phi} \in C_c^1(\Omega, \mathbb{R}^N)$ we have \begin{align*} &\langle Du, \bar{\phi} \rangle \\ &= -\int_{\Omega} u \, \mbox{div} \,\bar{\phi} \, dx \\ & = - \int_{\Omega} \int_{-\infty}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx\\ &= - \int_{\Omega} \int_{-\infty}^{0} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} f_t \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \chi_{\Omega \backslash E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} (1-\chi_{E_t}) \, \mbox{div} \,\bar{\phi} \, dt\,dx -\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &=\int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx - \int_{\Omega} \int_{-\infty}^{0} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{0}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{\Omega} \int_{-\infty}^{0} \mbox{div} \,\bar{\phi} \, dt\,dx-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= 0-\int_{\Omega} \int_{-\infty}^{\infty} \chi_{E_t} \, \mbox{div} \,\bar{\phi} \, dt\,dx \\ &= \int_{-\infty}^{\infty} \langle D\chi_{E_t}, \bar{\phi}\rangle \,dt \end{align*} Hence, $Du=\int_{-\infty}^{\infty} D\chi_{E_t}\, dt$, and $|Du|(\Omega) \leq \int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dx dt$.

**Part II: (coverse)**Proof of $\int_{-\infty}^{\infty}\int_{\Omega}|D\chi_{E_t}|\, dxdt\leq |Du|(\Omega) $:**Step i.**We first assume that $u$ belongs to the space $\mathcal{A}(\Omega)$ of piecewise linear and continuous functions in $\Omega$. By linearity, one can assume that $u=a\cdot x+b$ with $a\in \mathbb{R}^N$ and $b\in \mathbb{R}$, so that\begin{align*}

&\int_{\Omega} |D\chi_{E_t}|\\

&=\mathcal{H}(\Omega \cap \partial E_t)\\

&=\mathcal{H}(\Omega \cap \{x| a\cdot x +b=t\})\\

&=\int_{\Omega \cap \{x| a\cdot x +b=t\}} d\mathcal{H}^{N-1}(x)\\

&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)

\end{align*}

Thus we get,

\begin{align*}

&\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\\

&=|a|\mathcal{L}(\Omega)\\

&=\int_{\{x| a\cdot x +b=t\}}\chi_{\Omega}(x)\, d\mathcal{H}^{N-1}(x)\\

&=\int_{\Omega} |Du|

\end{align*}

Hence we have,

\begin{align*}

\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt=|Du|(\Omega) \dots \mbox{ if } u=a\cdot x+b.

\end{align*}

**Step ii.**Now we prove that $\int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_t}|\, dx dt\leq|Du|(\Omega)$ for all $u\in BV(\Omega)$. We know that the space of piecewise linear and continuous functions $\mathcal{A}(\Omega)$ is dense in $W^{1, 1}(\Omega)$ when equipped with the strong topology. We also know that the space $C^{\infty}\cap W^{1, 1}(\Omega)$ is dense in $BV$ when equipped with the intermediate convergence. Thus, there exists a sequence $\{u_n\}_{n\in \mathbb{N}} \in \mathcal{A}(\Omega)$ such that $u_n\rightharpoonup u$ for the intermediate convergence. For each of the functions $u_n$ we set $E_{n, t}:=\{x\in \Omega: u_n(x) > t\}$. Due to the intermediate convergence, we have\begin{align*}

&\int_{\Omega}|Du|=\lim_{n\rightarrow \infty}\int_{\Omega}|Du_n| \dots \mbox{the intermediate convergence}\\

&=\lim_{n\rightarrow \infty} \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{from step i}\\

&\geq \int_{-\infty}^{\infty} \lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n,t}}|\, dx dt \dots \mbox{Fatou's lemma}\\

\end{align*}

From the intermediate convergence we also have $u_n\rightarrow u$ in $L^1(\Omega)$. i.e.

\begin{align*}

\int_{\Omega} |u_n-u|=\int_{\Omega} \int_{-\infty}^{\infty} |\chi_{E_{n,t}}-\chi_{E_t}|\ dt dx = \int_{-\infty}^{\infty} \Big(\int_{\Omega} |\chi_{E_{n,t}}-\chi_{E_t}|\ dx \Big) dt=0.

\end{align*}

Thus, for a subsequence $E_{n_m, t}$, and for almost all $t \in \mathbb{R}$, $\chi_{E_{n_m, t}}\rightarrow \chi_{E_{n, t}}$ strongly in $L^1(\Omega)$. The lower semicontinuity of the total variation with respect to the strong convergence in $L^1(\Omega)$ we get $\lim\inf_{n\rightarrow \infty} \int_{\Omega} |D\chi_{E_{n_m,t}}|\, dx \geq \int_{\Omega} |D\chi_{E_{t}}|\, dx$. Thus, we get,

$$ \int_{\Omega}|Du| \geq \int_{-\infty}^{\infty} \int_{\Omega} |D\chi_{E_{t}}|\, dx dt. $$

This completes the proof!

(By the way, step ii also proves that $D\chi_{E_t} \in \mathbf{M}(\Omega, \mathbb{R}^N)$ for a.e. $t\in \mathbb{R}$, something that we used in Part I of the proof.)